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Our economy consists of three assets where the prices of these assets are known at time zero (t = 0). There are two
possible states-of-the-world at time one (t = 1). The two possible states are ωa and ωb. From the vantage point of
time zero we do not know which state we will be in at time one but we do know the attendant probabilities. The
table below presents asset prices at time zero and asset payoffs at time one where the payoff amount depends on
the state-of-the-world at time one...

Table 1 - Our Two State Economy

Asset Price Payoff t = 1
Symbol t = 0 ωa ωb

B 100 105 105
X 80 120 60
Y 50 40 80

The table below presents the time zero probabilities of finding ourselves in either state ωa or state ωb at time
one...

Table 2 - State Probabilities

Description Symbol Probability
Probability that we will find ourselves in state ωa at time one p 0.60
Probability that we will find ourselves in state ωb at time one 1− p 0.40

Our Hypothetical Problem

We will define an arbitrage as the ability to earn a positive return at no risk on a zero investment. An arbitrage
portfolio has the following characteristics...

1 Has zero cost to set up
2 Has non-negative values in the future
3 May be of positive value in the future

By creating such a portfolio an investor would receive at no cost the possibility of receiving money in the fu-
ture.

Question: Given the asset prices and payoffs in Table 1 can we set up an arbitrage such that we invest $0 at
time zero yet receive a payoff of $100 at time one regardless of the state-of-the-world at that time?

Asset Pricing At Time Zero

Asset B is a risk-free asset in that it’s payoff at time one is known with certainty at time zero. The payoff in time
one on Asset B is $105 (Ba) in state ωa and $105 (Bb) in state ωb. Given that the risk-free rate of return in our
economy is 5% the equation for the price of Asset B at time zero (B0) using Tables 1 and 2 above is...

B0 =
Ba p+Bb (1− p)
1 + discount rate

=
(105)(0.60) + (105)(0.40)

1.05
= 100 (1)
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Asset X is a risky asset in that it’s payoff at time one is not known with certainty at time zero. The payoff in time
one on Asset X is either $120 (Xa) in state ωa or $60 (Xb) in state ωb. Given that the discount rate applicable to
this asset is 20% the equation for the price of Asset X at time zero (X0) using Tables 1 and 2 above is...

X0 =
Xa p+Xb (1− p)
1 + discount rate

=
(120)(0.60) + (60)(0.40)

1.20
= 80 (2)

Asset Y is also a risky asset in that it’s payoff at time one is not known with certainty at time zero. The payoff in
time one on Asset Y is either $40 (Ya) in state ωa or $80 (Yb) in state ωb. Given that the discount rate applicable
to this asset is 12% the equation for the price of Asset Y at time zero (Y0) using Tables 1 and 2 above is...

Y0 =
Ya p+ Yb (1− p)
1 + discount rate

=
(40)(0.60) + (80)(0.40)

1.12
= 50 (3)

Finding The Arbitrage

To create the arbitrage portfolio at time zero we will either long or short assets B, X and Y. We therefore make the
following definitions in Table 3 below...

Table 3 - Arbitrage Portfolio Composition

Description Symbol
Units of Asset B that we either long or short at time zero θb
Units of Asset X that we either long or short at time zero θx
Units of Asset Y that we either long or short at time zero θy

If theta is positive then we hold a long position in that asset at time zero and must pay the purchase price
(negative cash flow) to acquire that asset. If theta is negative then we hold a short position in that asset at time
zero and receive the purchase price (positive cash flow) when we sell that asset short. The equation for the cost of
the arbitrage portfolio at time zero is...

−θbB0 − θxX0 − θy Y0 = Net cash inflow/(outflow) at time zero (4)

Since we defined an arbitrage as having a zero investment at time zero the equation for the cost of the arbitrage
portfolio at time zero becomes...

−θbB0 − θxX0 − θy Y0 = 0 (5)

Whereas at time zero we set up the arbitrage portfolio at time one we unwind it. Depending on the state-of-the-world
at time one our net cash inflow (a positive value) or net cash outflow (a negative value) will be...

θbBa + θxXa + θy Ya = Net cash inflow/(outflow) at time one given state ωa (6)

θbBb + θxXb + θy Yb = Net cash inflow/(outflow) at time one given state ωb (7)

We defined an arbitrage portfolio as having non-negative values at time one and the possibility of a positive value
in one or more states at time one. Given the hypothetical problem above we will construct our portfolio such that
we receive $100 at time one regardless of the state-of-the-world at that time. Given this construct our net cash
inflow at time one will be...

θbBa + θxXa + θy Ya = $100 at time one given state ωa (8)

θbBb + θxXb + θy Yb = $100 at time one given state ωb (9)

Given Table 1 above we know the prices of Assets B, X and Y at time zero so all we need to set up our arbitrage
portfolio are the values of θb, θx and θy. To obtain these values we must solve Equations (5), (8) and (9) above
simultaneously. The system of linear equations that we must solve is...

−θbB0 − θxX0 − θy Y0 = 0

θbBa + θxXa + θy Ya = 100

θbBb + θxXb + θy Yb = 100 (10)
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We will define matrix A as the matrix of asset prices and payoffs per Table 1 above. Noting that matrix elements
in parenthesis are negative values the equation for matrix A in matrix notation is...

A =

(B0) (X0) (Y0)
Ba Xa Ya
Bb Xb Yb

 =

(100) (80) (50)
105 120 40
105 60 80

 (11)

We will define vector u as the vector of arbitrage portfolio payoffs at time one. Using Equation (10) above the
equation for vector u in vector notation is...

~u =

 0
100
100

 (12)

We will define vector v as the vector of thetas that we must solve for. Using Equation (10) above the equation for
vector v in vector notation is...

~v =

θbθx
θy

 (13)

Using Equations (11), (12) and (13) we can write our system of linear equations as a matrix:vector product. The
system of linear equations that we must solve is...

A~v = ~u (14)

To solve for vector v we multiply both sides of Equation (14) by the inverse of matrix A. Noting that matrix I is
the identity matrix the solution to vector v is...

A−1A~v = A−1~u

I~v = A−1~u

~v = A−1~u (15)

The Answer To Our Hypthetical Problem

Using Equation (15) above and Appendix Equation (20) below our vector v, which is the vector of thetas, is...

~v = A−1~u =

(0.10435) (0.04928) (0.04058)
0.06087 0.03986 0.01812
0.09130 0.03478 0.05217

 0
100
100

 =

(8.98551)
5.79710
8.69565

 (16)

Conclusion: If at time zero we go short 8.98551 units of Asset B, go long 5.79710 units of Asset X and go long
8.69565 units of Asset Y then this portfolio will be of zero cost to set up and will give us a guaranteed payoff of $100
in time one regardless of the state-of-the-world at that time. We can conclude that asset prices at time zero
per Table 1 above permit arbitrage. If an arbitrage opportunity exists then demand for the assets involved
would be infinte, which is inconsistent with market equilibrium.

The following tables prove that the thetas in Equation (16) above are correct...

The cost to set up the arbitrage portfolio at time zero is...

Asset Price Units Position Net CF
B 100 8.98551 Short 898.55
X 80 5.79710 Long -463.77
Y 50 8.69565 Long -434.78

Total 0.00

Proceeds from unwinding the portfolio at time one given state-of-the-world ωa is...
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Asset Payoff Units Position Net CF
B 105 8.98551 Short -943.48
X 120 5.79710 Long 695.65
Y 40 8.69565 Long 347.83

Total 100.00

Proceeds from unwinding the portfolio at time one given state-of-the-world ωb is...

Asset Payoff Units Position Net CF
B 105 8.98551 Short -943.48
X 60 5.79710 Long 347.83
Y 80 8.69565 Long 695.65

Total 100.00

Appendix

A. The determinant of matrix A as defined by Equation (11) above is...

|A| = −B0

(
XaYb −XbYa

)
+X0

(
BaYb −BbYa

)
− Y0

(
BaXb −BbXa

)
= −100

(
(120)(80)− (60)(40)

)
+ 80

(
(105)(80)− (105)(40)

)
− 50

(
(105)(60)− (105)(120)

)
= −69000 (17)

Note that since the determinant of matrix A is non-zero then matrix A can be inverted. When we eliminate the
arbitrage in Part II of the series this statement will be important.

B. The cofactors of matrix A as defined by Equation (11) above are...

a11 = (−1)1+1(XaYb −XbYa) = (1)[(120)(80)− (60)(40)] = 7200

a12 = (−1)1+2(BaYb −BbYa) = (−1)[(105)(80)− (105)(40)] = −4200

a13 = (−1)1+3(BaXb −BbXa) = (1)[(105)(60)− (105)(120)] = −6300

a21 = (−1)2+1(X0Yb −XbY0) = (−1)[(−80)(80)− (60)(−50)] = 3400

a22 = (−1)2+2(B0Yb −BbY0) = (1)[(−100)(80)− (105)(−50)] = −2750

a23 = (−1)2+3(B0Xb −BbX0) = (−1)[(−100)(60)− (105)(−80)] = −2400

a31 = (−1)3+1(X0Ya −XaY0) = (1)[(−80)(40)− (120)(−50)] = 2800

a32 = (−1)3+2(B0Ya −BaY0) = (−1)[(−100)(40)− (105)(−50)] = −1250

a33 = (−1)3+3(B0Xa −BaX0) = (1)[(−100)(120)− (105)− (80)] = −3600 (18)

C. The adjugate of matrix A using the cofactors in Appendix Equations (18) is...

adj(A) =

a11 a21 a31
a12 a22 a32
a13 a23 a33

 =

 7200 3400 2800
(4200) (2750) (1250)
(6300) (2400) (3600)

 (19)

D. Using Appendix Equations (17), (18) and (19) the inverse of matrix A as defined by Equation (11) is...

A−1 =
1

|A|
adj(A)

= − 1

69000

 7200 3400 2800
(4200) (2750) (1250)
(6300) (2400) (3600)


=

(0.10435) (0.04928) (0.04058)
0.06087 0.03986 0.01812
0.09130 0.03478 0.05217

 (20)
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